metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.46D10, C23.10Dic10, C10.73(C4×D4), C23.D5⋊16C4, C22.97(D4×D5), C23.25(C4×D5), C10.35C22≀C2, (C22×C10).62D4, (C22×C4).26D10, C2.1(C23⋊D10), (C22×C10).11Q8, C5⋊3(C23.8Q8), (C2×Dic5).229D4, C23.51(C5⋊D4), C10.16(C22⋊Q8), (C23×Dic5).4C2, C22⋊2(C10.D4), (C23×C10).29C22, (C22×C20).23C22, C22.24(C2×Dic10), C23.279(C22×D5), C10.10C42⋊12C2, C2.26(Dic5⋊4D4), C22.45(D4⋊2D5), (C22×C10).321C23, C2.6(Dic5.14D4), C2.3(C23.18D10), C10.72(C22.D4), (C22×Dic5).37C22, (C2×C10)⋊5(C4⋊C4), C10.53(C2×C4⋊C4), (C2×Dic5)⋊6(C2×C4), (C2×C22⋊C4).8D5, (C2×C10).31(C2×Q8), C22.125(C2×C4×D5), (C2×C10.D4)⋊8C2, (C2×C10).315(C2×D4), (C10×C22⋊C4).7C2, C2.6(C2×C10.D4), C22.49(C2×C5⋊D4), (C2×C23.D5).8C2, (C2×C10).141(C4○D4), (C2×C10).208(C22×C4), (C22×C10).117(C2×C4), SmallGroup(320,573)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.46D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=b, ab=ba, eae-1=faf-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=be9 >
Subgroups: 734 in 234 conjugacy classes, 83 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C22×C10, C22×C10, C23.8Q8, C10.D4, C23.D5, C5×C22⋊C4, C22×Dic5, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C10.D4, C2×C23.D5, C10×C22⋊C4, C23×Dic5, C24.46D10
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, D10, C2×C4⋊C4, C4×D4, C22≀C2, C22⋊Q8, C22.D4, Dic10, C4×D5, C5⋊D4, C22×D5, C23.8Q8, C10.D4, C2×Dic10, C2×C4×D5, D4×D5, D4⋊2D5, C2×C5⋊D4, Dic5.14D4, Dic5⋊4D4, C2×C10.D4, C23.18D10, C23⋊D10, C24.46D10
(1 41)(2 93)(3 43)(4 95)(5 45)(6 97)(7 47)(8 99)(9 49)(10 81)(11 51)(12 83)(13 53)(14 85)(15 55)(16 87)(17 57)(18 89)(19 59)(20 91)(21 86)(22 56)(23 88)(24 58)(25 90)(26 60)(27 92)(28 42)(29 94)(30 44)(31 96)(32 46)(33 98)(34 48)(35 100)(36 50)(37 82)(38 52)(39 84)(40 54)(61 104)(62 144)(63 106)(64 146)(65 108)(66 148)(67 110)(68 150)(69 112)(70 152)(71 114)(72 154)(73 116)(74 156)(75 118)(76 158)(77 120)(78 160)(79 102)(80 142)(101 123)(103 125)(105 127)(107 129)(109 131)(111 133)(113 135)(115 137)(117 139)(119 121)(122 159)(124 141)(126 143)(128 145)(130 147)(132 149)(134 151)(136 153)(138 155)(140 157)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 81)(37 82)(38 83)(39 84)(40 85)(61 143)(62 144)(63 145)(64 146)(65 147)(66 148)(67 149)(68 150)(69 151)(70 152)(71 153)(72 154)(73 155)(74 156)(75 157)(76 158)(77 159)(78 160)(79 141)(80 142)(101 123)(102 124)(103 125)(104 126)(105 127)(106 128)(107 129)(108 130)(109 131)(110 132)(111 133)(112 134)(113 135)(114 136)(115 137)(116 138)(117 139)(118 140)(119 121)(120 122)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(41 92)(42 93)(43 94)(44 95)(45 96)(46 97)(47 98)(48 99)(49 100)(50 81)(51 82)(52 83)(53 84)(54 85)(55 86)(56 87)(57 88)(58 89)(59 90)(60 91)(61 126)(62 127)(63 128)(64 129)(65 130)(66 131)(67 132)(68 133)(69 134)(70 135)(71 136)(72 137)(73 138)(74 139)(75 140)(76 121)(77 122)(78 123)(79 124)(80 125)(101 160)(102 141)(103 142)(104 143)(105 144)(106 145)(107 146)(108 147)(109 148)(110 149)(111 150)(112 151)(113 152)(114 153)(115 154)(116 155)(117 156)(118 157)(119 158)(120 159)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 102 41 124)(2 133 42 111)(3 120 43 122)(4 131 44 109)(5 118 45 140)(6 129 46 107)(7 116 47 138)(8 127 48 105)(9 114 49 136)(10 125 50 103)(11 112 51 134)(12 123 52 101)(13 110 53 132)(14 121 54 119)(15 108 55 130)(16 139 56 117)(17 106 57 128)(18 137 58 115)(19 104 59 126)(20 135 60 113)(21 147 86 65)(22 74 87 156)(23 145 88 63)(24 72 89 154)(25 143 90 61)(26 70 91 152)(27 141 92 79)(28 68 93 150)(29 159 94 77)(30 66 95 148)(31 157 96 75)(32 64 97 146)(33 155 98 73)(34 62 99 144)(35 153 100 71)(36 80 81 142)(37 151 82 69)(38 78 83 160)(39 149 84 67)(40 76 85 158)
G:=sub<Sym(160)| (1,41)(2,93)(3,43)(4,95)(5,45)(6,97)(7,47)(8,99)(9,49)(10,81)(11,51)(12,83)(13,53)(14,85)(15,55)(16,87)(17,57)(18,89)(19,59)(20,91)(21,86)(22,56)(23,88)(24,58)(25,90)(26,60)(27,92)(28,42)(29,94)(30,44)(31,96)(32,46)(33,98)(34,48)(35,100)(36,50)(37,82)(38,52)(39,84)(40,54)(61,104)(62,144)(63,106)(64,146)(65,108)(66,148)(67,110)(68,150)(69,112)(70,152)(71,114)(72,154)(73,116)(74,156)(75,118)(76,158)(77,120)(78,160)(79,102)(80,142)(101,123)(103,125)(105,127)(107,129)(109,131)(111,133)(113,135)(115,137)(117,139)(119,121)(122,159)(124,141)(126,143)(128,145)(130,147)(132,149)(134,151)(136,153)(138,155)(140,157), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,141)(80,142)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,121)(120,122), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,126)(62,127)(63,128)(64,129)(65,130)(66,131)(67,132)(68,133)(69,134)(70,135)(71,136)(72,137)(73,138)(74,139)(75,140)(76,121)(77,122)(78,123)(79,124)(80,125)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,102,41,124)(2,133,42,111)(3,120,43,122)(4,131,44,109)(5,118,45,140)(6,129,46,107)(7,116,47,138)(8,127,48,105)(9,114,49,136)(10,125,50,103)(11,112,51,134)(12,123,52,101)(13,110,53,132)(14,121,54,119)(15,108,55,130)(16,139,56,117)(17,106,57,128)(18,137,58,115)(19,104,59,126)(20,135,60,113)(21,147,86,65)(22,74,87,156)(23,145,88,63)(24,72,89,154)(25,143,90,61)(26,70,91,152)(27,141,92,79)(28,68,93,150)(29,159,94,77)(30,66,95,148)(31,157,96,75)(32,64,97,146)(33,155,98,73)(34,62,99,144)(35,153,100,71)(36,80,81,142)(37,151,82,69)(38,78,83,160)(39,149,84,67)(40,76,85,158)>;
G:=Group( (1,41)(2,93)(3,43)(4,95)(5,45)(6,97)(7,47)(8,99)(9,49)(10,81)(11,51)(12,83)(13,53)(14,85)(15,55)(16,87)(17,57)(18,89)(19,59)(20,91)(21,86)(22,56)(23,88)(24,58)(25,90)(26,60)(27,92)(28,42)(29,94)(30,44)(31,96)(32,46)(33,98)(34,48)(35,100)(36,50)(37,82)(38,52)(39,84)(40,54)(61,104)(62,144)(63,106)(64,146)(65,108)(66,148)(67,110)(68,150)(69,112)(70,152)(71,114)(72,154)(73,116)(74,156)(75,118)(76,158)(77,120)(78,160)(79,102)(80,142)(101,123)(103,125)(105,127)(107,129)(109,131)(111,133)(113,135)(115,137)(117,139)(119,121)(122,159)(124,141)(126,143)(128,145)(130,147)(132,149)(134,151)(136,153)(138,155)(140,157), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,141)(80,142)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134)(113,135)(114,136)(115,137)(116,138)(117,139)(118,140)(119,121)(120,122), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,126)(62,127)(63,128)(64,129)(65,130)(66,131)(67,132)(68,133)(69,134)(70,135)(71,136)(72,137)(73,138)(74,139)(75,140)(76,121)(77,122)(78,123)(79,124)(80,125)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,102,41,124)(2,133,42,111)(3,120,43,122)(4,131,44,109)(5,118,45,140)(6,129,46,107)(7,116,47,138)(8,127,48,105)(9,114,49,136)(10,125,50,103)(11,112,51,134)(12,123,52,101)(13,110,53,132)(14,121,54,119)(15,108,55,130)(16,139,56,117)(17,106,57,128)(18,137,58,115)(19,104,59,126)(20,135,60,113)(21,147,86,65)(22,74,87,156)(23,145,88,63)(24,72,89,154)(25,143,90,61)(26,70,91,152)(27,141,92,79)(28,68,93,150)(29,159,94,77)(30,66,95,148)(31,157,96,75)(32,64,97,146)(33,155,98,73)(34,62,99,144)(35,153,100,71)(36,80,81,142)(37,151,82,69)(38,78,83,160)(39,149,84,67)(40,76,85,158) );
G=PermutationGroup([[(1,41),(2,93),(3,43),(4,95),(5,45),(6,97),(7,47),(8,99),(9,49),(10,81),(11,51),(12,83),(13,53),(14,85),(15,55),(16,87),(17,57),(18,89),(19,59),(20,91),(21,86),(22,56),(23,88),(24,58),(25,90),(26,60),(27,92),(28,42),(29,94),(30,44),(31,96),(32,46),(33,98),(34,48),(35,100),(36,50),(37,82),(38,52),(39,84),(40,54),(61,104),(62,144),(63,106),(64,146),(65,108),(66,148),(67,110),(68,150),(69,112),(70,152),(71,114),(72,154),(73,116),(74,156),(75,118),(76,158),(77,120),(78,160),(79,102),(80,142),(101,123),(103,125),(105,127),(107,129),(109,131),(111,133),(113,135),(115,137),(117,139),(119,121),(122,159),(124,141),(126,143),(128,145),(130,147),(132,149),(134,151),(136,153),(138,155),(140,157)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,81),(37,82),(38,83),(39,84),(40,85),(61,143),(62,144),(63,145),(64,146),(65,147),(66,148),(67,149),(68,150),(69,151),(70,152),(71,153),(72,154),(73,155),(74,156),(75,157),(76,158),(77,159),(78,160),(79,141),(80,142),(101,123),(102,124),(103,125),(104,126),(105,127),(106,128),(107,129),(108,130),(109,131),(110,132),(111,133),(112,134),(113,135),(114,136),(115,137),(116,138),(117,139),(118,140),(119,121),(120,122)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(41,92),(42,93),(43,94),(44,95),(45,96),(46,97),(47,98),(48,99),(49,100),(50,81),(51,82),(52,83),(53,84),(54,85),(55,86),(56,87),(57,88),(58,89),(59,90),(60,91),(61,126),(62,127),(63,128),(64,129),(65,130),(66,131),(67,132),(68,133),(69,134),(70,135),(71,136),(72,137),(73,138),(74,139),(75,140),(76,121),(77,122),(78,123),(79,124),(80,125),(101,160),(102,141),(103,142),(104,143),(105,144),(106,145),(107,146),(108,147),(109,148),(110,149),(111,150),(112,151),(113,152),(114,153),(115,154),(116,155),(117,156),(118,157),(119,158),(120,159)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,102,41,124),(2,133,42,111),(3,120,43,122),(4,131,44,109),(5,118,45,140),(6,129,46,107),(7,116,47,138),(8,127,48,105),(9,114,49,136),(10,125,50,103),(11,112,51,134),(12,123,52,101),(13,110,53,132),(14,121,54,119),(15,108,55,130),(16,139,56,117),(17,106,57,128),(18,137,58,115),(19,104,59,126),(20,135,60,113),(21,147,86,65),(22,74,87,156),(23,145,88,63),(24,72,89,154),(25,143,90,61),(26,70,91,152),(27,141,92,79),(28,68,93,150),(29,159,94,77),(30,66,95,148),(31,157,96,75),(32,64,97,146),(33,155,98,73),(34,62,99,144),(35,153,100,71),(36,80,81,142),(37,151,82,69),(38,78,83,160),(39,149,84,67),(40,76,85,158)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | Q8 | D5 | C4○D4 | D10 | D10 | Dic10 | C4×D5 | C5⋊D4 | D4×D5 | D4⋊2D5 |
kernel | C24.46D10 | C10.10C42 | C2×C10.D4 | C2×C23.D5 | C10×C22⋊C4 | C23×Dic5 | C23.D5 | C2×Dic5 | C22×C10 | C22×C10 | C2×C22⋊C4 | C2×C10 | C22×C4 | C24 | C23 | C23 | C23 | C22 | C22 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 4 | 2 | 2 | 2 | 4 | 4 | 2 | 8 | 8 | 8 | 4 | 4 |
Matrix representation of C24.46D10 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 32 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
28 | 28 | 0 | 0 | 0 | 0 |
13 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 39 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 27 |
0 | 0 | 0 | 0 | 14 | 14 |
3 | 5 | 0 | 0 | 0 | 0 |
23 | 38 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 23 | 0 | 0 |
0 | 0 | 32 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 24 | 38 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,32,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[28,13,0,0,0,0,28,32,0,0,0,0,0,0,9,0,0,0,0,0,39,32,0,0,0,0,0,0,30,14,0,0,0,0,27,14],[3,23,0,0,0,0,5,38,0,0,0,0,0,0,40,32,0,0,0,0,23,1,0,0,0,0,0,0,3,24,0,0,0,0,3,38] >;
C24.46D10 in GAP, Magma, Sage, TeX
C_2^4._{46}D_{10}
% in TeX
G:=Group("C2^4.46D10");
// GroupNames label
G:=SmallGroup(320,573);
// by ID
G=gap.SmallGroup(320,573);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,254,219,184,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=b,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^9>;
// generators/relations